Water Conditioning Basics

The Hydrologic Cycle
Guidelines for Solving Water Problems, Terminology, Water Analysis, Sizing Parameters
The total area of the earth is composed of 2/3 water, making it one of the most plentiful and most important materials available. Without potable water, mankind cannot survive.

Pure water consists of two parts hydrogen and one part oxygen, chemically combined to form pure water.

The only pure source of water is the earth's atmosphere (sometimes called the hydrological cycle). Impure water from the earth's oceans, lakes, rivers and surface evaporates into the atmosphere, then condenses to form rain droplets which are totally pure. The above process operates basically the same as a man-made still, which evaporates all the impurities from the water, then returns the condensates into pure water. If this process did not exist, there would likely not be enough potable water to support the earth's population.

The pure water vapor, which forms in the earth's atmosphere (clouds), begins to pick up impurities. As it begins to fall to earth in the form of rain, snow, etc., impurities are immediately absorbed. These impurities may be dust, micro-organisms, gases, etc. - at least a little of everything found in the atmosphere on the way to the surface.

The rain or snowfall finds its way to various sources of water supplies on the earth's lakes, rivers, oceans or it may soak into the ground and become a part of an underground stream or lake.

Characteristics of Various Water Sources

Rain Water

After the water picks up impurities in the atmosphere and percolates through the ground, it comes into contact with carbon dioxide and then forms carbonic acid. This dissolves some of the mineral content of the soil or rock it contacts, thus adding these minerals to the water.

Surface Water

Water from streams may be turbid due to the presence of silt, clay, etc. However, in larger surface water, a greater amount of self-purification takes place through aerobic digestion, plant life, fish, etc. and the quality of the water could change to a great degree.

Ground Water

Normally picks up the minerals it flows through. As a general rule, water from deep wells contains a higher mineral content and is less likely to contain organics or turbidity. Water from shallow wells is usually lower in mineral content and may be subjected to pollution or other bacteria which is available from various sources nearby (e.g. spring run-off through forests and hills, plants, industrial wastes, etc. which will all pass various bacteria into the water).

Impurities

Impurities in water are divided into two classifications:

1. **Dissolved Solids**
 Those which naturally dissolve into water. NOTE: Gases may also dissolve into water unless they combine chemically with other impurities. They will be released into the atmosphere upon boiling and are not truly classified as dissolved solids. Upon evaporation, only the dissolved solids would remain in the actual mineral form and then can be analyzed by actual weight of the various elements.

2. **Suspended Solids**
 Consist of clay, mud, silt, etc. and will not dissolve into water naturally but remain as such in their present state.

Water treatment and pollution control is one of the largest and most important industries in the modern day world. As can be seen from the preceding information, water treatment is a very broad and varied field and chemical analysis of certain water supplies is virtually impossible to completely break down. In time, modern man may discover additional information regarding the field of water treatment and the entire cycle of the earth's largest and most important single resource.

The following sections will attempt to clarify some of the more common problems and solutions presently available.
Guidelines for Solving Water Problems

<table>
<thead>
<tr>
<th>PROBLEM</th>
<th>SYMPTOM</th>
<th>CAUSE</th>
<th>CORRECTIVE EQUIPMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Water</td>
<td>Spotting on dishes and glassware; scale on inside of water heater, pipes and water-using appliances; soap curd and bathtub ring; clothes look gray and dingy.</td>
<td>Calcium and magnesium in water, measuring 1.0 gpg or more.</td>
<td>Water Softener (Max. Hardness 100 gpg) (Max. Clear Water Iron 1.5 ppm)</td>
</tr>
<tr>
<td>Clear Water Iron</td>
<td>Yellow, brown or rusty stains on plumbing fixtures, water-using appliances and fabrics; metallic taste in foods and beverages; water is clear when drawn from the faucet but oxidizes when exposed to air, then changes color ranging from yellow to brown.</td>
<td>Iron in the water measuring 0.3 ppm or more.</td>
<td>0.3-1.5 ppm Water Softener. 1.5-7.5 ppm SIM Specialty System Softener. 1.5-30 ppm Chemical Free Iron Filter (Note 1).</td>
</tr>
<tr>
<td>Red Water Iron</td>
<td>Same symptoms as Clear Water Iron but Iron has already oxidized and has a yellow to rust color when drawn from the faucet.</td>
<td>Iron in the water measuring 0.3 ppm or more.</td>
<td>0.3-30 ppm Chemical Free Iron Filter (Note 1). 0.3-10 ppm Iron & Sulfur Filter.</td>
</tr>
<tr>
<td>Bacterial Iron</td>
<td>Same symptoms as Clear & Red Water Iron but can have clumps or balls that may foul plumbing lines and other water-using appliances; particularly noticeable as a yellow to reddish slime in toilet flush tanks.</td>
<td>Iron bacteria are a group of bacteria which thrive in iron-bearing water, utilizing iron as an energy source. This bacteria is not a health hazard.</td>
<td>Chemical Free Iron Filter (Note 1). Chemical feed pump feeding chlorine followed by a Multimedia Filter (Note 3).</td>
</tr>
<tr>
<td>Manganese</td>
<td>Blackish stain on fixtures and laundry; manganese content above 0.05 ppm causes stains.</td>
<td>Interaction of carbon dioxide or organic matter with manganese-bearing soils. Usually found in combination with iron.</td>
<td>0.05-1.0 ppm Chemical Free M Iron Filter (Note 1). 1.0-2.0 ppm Neutralizing Filter followed by Iron & Sulfur Filter (Note 2).</td>
</tr>
<tr>
<td>Acid Water</td>
<td>Blue/green or rusty stains and corrosion of plumbing fixtures and other water-using appliances; pitting of porcelain and enamel fixtures and dishes. Pin holes in copper plumbing lines.</td>
<td>Generally associated with water with a pH value of less than the neutral 7.0.</td>
<td>pH 6.0-6.9 Neutralizing Filter. pH 4.0-6.9 Chemical Feed Pump feeding soda ash. Consult our Customer Service Dept.</td>
</tr>
<tr>
<td>Aggressive/Corrosive Water</td>
<td>Same symptoms as Acid Water but pH is 7.0 or higher.</td>
<td>Alkalinity and carbon dioxide or high dissolved oxygen in water. Electrolysis - two dissimilar metals in plumbing lines.</td>
<td>Consult our Customer Service Dept.</td>
</tr>
<tr>
<td>Hydrogen Sulfide</td>
<td>Rotten egg taste and/or odor. Turns copper plumbing lines black. Very corrosive.</td>
<td>Hydrogen sulfide is a dissolved gas found in some water supplies.</td>
<td>0.1-3.0 ppm Chemical Free Iron Filter or Iron & Sulfur Filter. 3.0-15 ppm Chemical Feed Pump feeding chlorine followed by a Multimedia Filter (Note 3).</td>
</tr>
<tr>
<td>Marshy, metallic or chlorine taste and/or odors other than hydrogen sulfide.</td>
<td>Objectionable tastes and/or odors other than hydrogen sulfide.</td>
<td>Dissolved minerals or gases; organic contamination or chlorination.</td>
<td>Activated Carbon Filter for whole house water supply or Taste & Odor Cartridge Filter for individual faucets.</td>
</tr>
<tr>
<td>Turbidity (Sand/ Sediment)</td>
<td>Foreign particles, dirty or cloudy water.</td>
<td>Tiny suspended particles that are the result of water main scale or silt. Private wells often contain sand or clay.</td>
<td>Multimedia Filter for whole house water supply or a Sediment Cartridge Filter for individual faucets.</td>
</tr>
<tr>
<td>Tannins</td>
<td>Yellow or brown tint or cast in water supply; tannins measuring 0.5 ppm or higher may cause staining and/or interference with various water treatment processes.</td>
<td>Result of decaying vegetation.</td>
<td>Organic Color Removal Filter. Consult our Customer Service Dept.</td>
</tr>
</tbody>
</table>

Note 1 - Water must have a minimum pressure of 20 psi, pumping rate of 5 gpm and a pH of 6.5 or higher for proper operation. Most water supplies contain calcium and magnesium which are not removed by an iron filter. We recommend following an iron filter with a water softener.

Note 2 - Oxidation of manganese is more pH dependent than iron. Therefore a pH of 8.2 or higher must be maintained. If the manganese level is >2.0 ppm or bacterial iron is present, consult our Customer Service Department.

Note 3 - This system also requires a retention tank to allow adequate contact time (minimum 20 minutes). An optional activated carbon filter for the whole house water supply or a taste & odor cartridge filter for individual faucets may be installed to remove any objectionable taste or odor.
Terminology

Grains per Gallon - gpg
1/7000 of a pound - normally used in relation to hardness.

Parts per Million - ppm
One part dissolved material in one million parts of water. Used as a measurement for iron, manganese, TDS, hydrogen sulfide, chlorides, sulfates and tannins.

Milligrams per Liter - mg/l
For our purpose, same as ppm. Normally used for a more accurate measurement or where small quantities of certain elements cause big problems in relation to iron, manganese, sulfur, nitrates and silica.

Converting gpg to ppm or mg/l
1 gpg = 17.1 ppm (mg/l)

Total Dissolved Solids - TDS
The weight of solids, per unit volume of water, which are in true solution. Can be determined by the evaporation of a measured volume of filtered water and determination of the residue weight. A common alternative method to determine TDS is to measure the conductivity of water.

Hardness
A characteristic of natural water due to the presence of dissolved calcium and magnesium. Water hardness is responsible for most scale formation in pipes and water heaters and forms insoluble “curd” when it reacts with soaps. Hardness is usually expressed in grains per gallon (gpg), parts per million (ppm) or milligrams per liter (mg/l), all as calcium carbonate equivalent.

Ferric Iron
Iron that is oxidized in water and is visible. Also called red water iron.

Ferrous Iron
Iron that is dissolved in water. Also called clear water iron.

pH
pH is a measure of the intensity of the acidity or alkalinity of water on a scale from 0 to 14, with 7 being neutral. When acidity is increased, the hydrogen ion concentration increases, resulting in a lower pH value. Similarly, when alkalinity is increased, the hydrogen ion concentration decreases, resulting in higher pH.

The pH value is an exponential function so that pH 10 is 10 times more alkaline than pH 9 and 100 times more alkaline than pH 8. Similarly, a pH 4 is 100 times more acid than pH 7.

pH Scale

<table>
<thead>
<tr>
<th>pH Value</th>
<th>Description</th>
<th>Example Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.0</td>
<td>Extremely Alkaline</td>
<td>Household Lye, Bleach</td>
</tr>
<tr>
<td>13.0</td>
<td>Extremely Alkaline</td>
<td>Ammonia</td>
</tr>
<tr>
<td>12.0</td>
<td>Extremely Alkaline</td>
<td>Milk of Magnesia</td>
</tr>
<tr>
<td>11.0</td>
<td>Extremely Alkaline</td>
<td>Borax, Baking Soda, Sea Water</td>
</tr>
<tr>
<td>10.0</td>
<td>Strongly Alkaline</td>
<td>Blood, Distilled Water</td>
</tr>
<tr>
<td>9.0</td>
<td>Moderately Alkaline</td>
<td>Milk, Corn</td>
</tr>
<tr>
<td>8.0</td>
<td>Slightly Alkaline</td>
<td>Boric Acid, Orange Juice, Vinegar</td>
</tr>
<tr>
<td>7.0</td>
<td>Neutral</td>
<td>Lemon Juice, Baking Soda, Sea Water</td>
</tr>
<tr>
<td>6.0</td>
<td>Slightly Acid</td>
<td>Orange Juice, Lemon Juice</td>
</tr>
<tr>
<td>5.0</td>
<td>Moderately Acid</td>
<td>Battery Acid</td>
</tr>
<tr>
<td>4.0</td>
<td>Strongly Acid</td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>Extremely Acid</td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>Excessively Acid</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>Very Extremely Acid</td>
<td></td>
</tr>
<tr>
<td>0.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: A complete glossary can be found in the Water Conditioning Glossary section.
Water Analysis

For correct sizing and application of water conditioning equipment, a water analysis is required. A basic water analysis includes tests for the following:

- **Hardness**
- **Iron**
- **Manganese**
- **pH**
- **TDS (Total Dissolved Solids)**

Water samples should be taken as near the source as possible and represent the average water condition. Clean containers must be used. When performing the analysis, the test equipment must be clean and rinsed with the test water and the test water should be between 68°F and 77°F (20°C and 25°C). Use rubber stops as supplied. Do not use your fingers as contaminants and acids could affect test results.

Additional tests can be performed for tannins and hydrogen sulfide (H2S). The test for H2S must be performed on-site for accurate results. Special tests can be performed for chlorides, sulfates and alkalinity by specified laboratories. If it is suspected the water supply is contaminated with coliform bacteria or nitrates, a sample must be collected in an approved sterilized container and submitted to a government approved laboratory. Iron bacteria will not be detected with the standard iron test and can be tested for by a government approved laboratory.

If the TDS is over 1000 ppm and hardness is less than 30% of the TDS, a complete water analysis should be performed to discover what other contaminants exist in the water.

If a contaminant exceeds the limits detectable by any test method, the raw water sample can be diluted with distilled water until a reading can be taken. A calculation must then be performed to determine the actual degree of contamination. All test chemicals are subject to age and extreme temperatures. Proper storage techniques and expiry dates should be observed.

The Water Analysis Report shown on the next two pages must be completed accurately to determine the correct equipment to recommend for the water problem(s) being experienced.

Hard Water

Water with a total hardness of 1.0 gpg or more as calcium carbonate equivalent.

- Less than 1.0 gpg Soft
- 1.0 - 3.5 gpg Slightly hard
- 3.5 - 7.0 gpg Moderately hard
- 7.0 - 10.5 gpg Hard
- More than 10.5 gpg Very hard

Hardness

A characteristic of natural water due to the presence of dissolved calcium and magnesium. Water hardness is responsible for most scale formation in pipes and water heaters and forms insoluble “curd” when it reacts with soaps. Hardness is usually expressed in grains per gallon (gpg), parts per million (ppm) or milligrams per liter (mg/l) all as calcium carbonate equivalent.

Soft Water

Any water which contains less than 1.0 gpg (17.1 mg/l) of hardness minerals, expressed as calcium carbonate equivalent.

Softened Water

Any water that is treated to reduce hardness minerals, expressed as calcium carbonate equivalent.
Bacterial analysis must be performed by your local health department.

HOW TO DRAW WATER SAMPLE
Use outlet nearest pump (not from bottom of pressure tank). Run water for five minutes or two pump cycles, then fill clean bottle to neck and cap immediately. Never use hot water. Return bottle with this completed form.

HOW TO MEASURE PUMPING RATE OF PUMP
1. Make certain no water is being drawn. Open spigot nearest pressure tank. When pump starts, close tap and measure time (in seconds) to refill pressure tank. This is **cycle time**.
2. Using a container of known volume, draw water and measure volume in gallons until pump starts again. This is **drawdown**.
3. Divide drawdown by cycle time and multiply the result by 60 to arrive at the **pumping rate** in gallons per minute. Insert this figure in #3 Water System.

1. Water Source
- City or area-wide authority
- Community water system (small water system usually supplying 12 homes or fewer)
- Water comes from:
 - Well
 - Lake
 - Reservoir
 - River
 - Unknown
 - New private well - Approx age ________ months
 - Old private well - Approx age ________ months
 - Private lake
 - Private spring
 - Private dugout
 - Private cistern
 - Other - describe ____________________________

2. Household Information
Do you now have water conditioning equipment?
- No
- Yes Type __________________ Size ________
- Single family
- Multi-family No. of units ________
- No. persons ________ No. baths ________
- Lawn irrigation on water system?
- Indoor pool
- Outdoor pool - Capacity ________ gallons
- Water line size from source - ________ inches

3. Water System
- **Type of Pump**
 - Constant Pressure
 - Jet
 - Submersible
 - Unknown
- **Pumping rate of pump** ________ gpm
- **Pressure Tank**
 - Air to water
 - Bladder Capacity ________ gallons
 - Operating pressure (low/high) ________ / ________ psi

4. Water Problems
When this sample was drawn, it was:
- Clear
- Colored
- Cloudy
- This water sample is ________ Untreated ________ Treated
- How is it treated? ____________________________

PROBLEMS
- **Hardness** (e.g. high soap usage, bathtub ring, lime deposits, etc.)
- **Iron Deposits** - if so, is iron build-up in flush tank?
- **Greasy**
- **Gritty**
- **Stringy** (iron bacteria?)
- **Color of Water** - **Red**
 - **Orange**
 - **Black**
 - **Greenish or blue stains on sinks, tubs, etc.**
- **Pitting of fixtures and/or pipes**
- **Sand** (visible particles)
- **Sediment or silt** (cloudy)
- **Bad Taste** - **Iron**
 - **Bitter**
 - **Salty**
- **Bad Odor** - **Rotten Egg**
 - **Musty**
 - **Iron**
- **Odor is in** - **Cold Water**
 - **Hot Water**
 - **Both**
- **Other Problems** - describe ____________________________

Other Problems - describe ____________________________

Note: Please answer all appropriate questions to ensure accurate equipment recommendations.
5. Standard Laboratory Tests

<table>
<thead>
<tr>
<th>Test</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Hardness</td>
<td>____________ gpg</td>
</tr>
<tr>
<td>Iron</td>
<td>____________ mg/l</td>
</tr>
<tr>
<td>Manganese</td>
<td>____________ mg/l</td>
</tr>
<tr>
<td>pH</td>
<td>____________</td>
</tr>
<tr>
<td>Total Dissolved Solids</td>
<td>____________ mg/l</td>
</tr>
</tbody>
</table>

6. Other Tests

<table>
<thead>
<tr>
<th>Test</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen Sulfide</td>
<td>____________ mg/l</td>
</tr>
<tr>
<td>(test must be performed on-site)</td>
<td></td>
</tr>
<tr>
<td>Tannins</td>
<td>____________ mg/l</td>
</tr>
</tbody>
</table>

7. Special Laboratory Tests

<table>
<thead>
<tr>
<th>Test</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorides</td>
<td>____________ mg/l</td>
</tr>
<tr>
<td>Sulfates</td>
<td>____________ mg/l</td>
</tr>
<tr>
<td>Alkalinity</td>
<td>____________ mg/l</td>
</tr>
</tbody>
</table>

If TDS is over 1000 ppm and hardness is less than 30% of the TDS, a total water analysis is required.

8. Explanation of Water Analysis

A. Total Hardness

This indicates the efficiency or workability of the water for everyday household use. Water in excess of 3 gpg is generally considered hard and should be softened.

B. Iron

Over 0.3 ppm of iron will cause discoloration of water and staining. Fully automatic water conditioners will correct this problem. Some extreme water situations may require filtration.

C. Manganese

Manganese is frequently encountered in iron-bearing water but to a lesser degree. Manganese is similar to iron in that it stains and clogs pipes and valves. Concentrations as low as 0.05 mg/l of manganese can cause problems.

D. pH

A scale used to measure the acidity or alkalinity of water. A pH reading below 6.5 normally indicates highly corrosive water and neutralizing equipment should be used. A pH reading in excess of 8.5 could indicate contaminated water and generally requires bacteriological and chemical analysis.

E. Hydrogen Sulfide (H₂S)

Testing for hydrogen sulfide should occur on-site. Hydrogen sulfide imparts a rotten egg odor and taste that makes water all but undrinkable and also promotes corrosion. In addition, it can foul the resin bed of a water conditioner. The use of a water conditioner is not recommended unless the water is first treated for the removal of hydrogen sulfide.

F. Total Dissolved Solids (TDS)

A measure of the soluble solids present in the water.

G. Tannins

Tannic acid is formed by decaying organic matter. Tannins alone are not harmful, although they can affect the proper operation of a chemical free iron filter.

H. Chlorides

Over 500 ppm may impart a salty taste to water.

I. Sulfates

Over 500 ppm may impart a bitter taste to water and have a slight laxative effect.

J. Alkalinity

Caused by the presence of bicarbonates, carbonates and hydroxides. Over 500 ppm creates a “soda” taste and makes skin dry.

Recommendations

Recommendations are based entirely on the information supplied and the water sample chemistry results at the time of analysis.

__

__

Recommended by __

Date __

Return completed form to: Water Conditioning Basics

18 Water Conditioning Basics
Sizing Parameters

Water Softener Sizing is Based On

- 60 gallons per person per day - total household use
- Three day minimum between regenerations
- Capacity between regenerations at factory salt settings or K label capacity
- Number of people x 60 gallons per person x gpg of hardness x 3 days = capacity required between regenerations
- Consult your factory representative for water that is 75 gpg or harder

Water Softener/Iron Removal Combination Units

- his unit should be recommended only when dictated by special circumstances or the needs of the customer.
- The customer should be made aware that a separate iron filter and softener is preferred because it is a more efficient way to deal with the water.
- When recommending a combination unit, follow the guidelines provided in the specifications.

Water Consumption for Regeneration

The volume of water used during the regeneration process of a water softener will vary depending on:

- Amount and type of resin
- Cycle time settings
- Flow controllers
- Salt settings
- Tank diameter

Generally, water usage for regeneration is based on the cubic feet of resin per water softener from a low of 30 gallons of water per cubic foot, up to a normal of 75 gallons of water per cubic foot, to a maximum of 100 gallons of water per cubic foot. Manufacturing specs and settings for each model size should be checked to verify exact amounts.

Three Day Sizing Method

The three day sizing method is used for the following reasons:

1. To determine the size of the water conditioner to be used
2. To allow for reserve capacity between regenerations so the customer does not run out of soft water
3. To provide the most economical operation cost

Conversion Factors & Compensated Iron & Manganese

Total Hardness converted from ppm or mg/l to Grains/US Gallon (gpg)

\[
\text{ppm (mg/l) ÷ 17.1 = gpg}
\]

If there is a small amount of Iron or Manganese in the water, add the following compensated values:

- Iron - ppm x 4
- Manganese - ppm x 8

To arrive at the additional compensated load on the softener

The Total Equivalent Iron for the softener to remove should not be greater than 1.5 ppm. Total Equivalent Iron is calculated as follows:

\[
\text{Iron ppm + 2 x Manganese ppm < 1.5 ppm}
\]

If the Total Equivalent Iron is less than 0.5 ppm, a Res-Up Feeder and Pro ResCare can be added as an optional safeguard against fouling or the bed can be cleaned occasionally by adding a small amount to the brine tank manually.

If the Total Equivalent Iron is 0.5 - 1.5 ppm, the softener can be sized accordingly but a Res-Up Feeder and Pro ResCare is required in addition to the softener to prevent iron fouling of the resin.

If the Total Equivalent Iron is greater than 1.5 ppm, an Iron Filter is required as pretreatment prior to the softener.